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Abstract - With the extensive growth of datasets, content-based 

image retrieval (CBIR), which entails the calculation of the 

distance between image feature vectors, has been becoming an 

important and promising topic. Large amounts of vectorized 

data, extracted from images via machine learning algorithms, 

are usually of high dimension, and traditional linear scanning 

would not be efficient in terms of speed and resource utilization. 

Approximate Nearest-Neighbor Search (ANNs) is an effective 

solution for quickly retrieving the Top-k results that are closest 

to the query image. Therefore, we investigate two well-known 

hashing based ANNs methods in this study.  

Furthermore, we propose a faster hashing-based ANN 

algorithm, named FPQ. Our algorithm considers both the data 

distribution and the time-consuming nature in codebook 

construction, and it employs memory-efficient algorithms to 

achieve increased time efficiency in the training and indexing 

processes. The speed, accuracy, and memory consumption of 

FPQ are compared and evaluated with other algorithms. Our 

results indicate the superiority of FPQ in terms of speed while 

consuming minimal memory resources, and search accuracy is 

well retained. This research contributes to the development of 

efficient CBIR systems that can be deployed in real-world 

applications. 

Index Terms - Approximate Nearest-Neighbor Search, Hashing-

Based Methods, Content-based Image Retrieval, High-

Dimensional Data, Top-K Retrieval.  

 

I.      PROBLEM DEFINITION 

 

With the query image 𝐼𝑞 , our objective is to efficiently 

retrieve top-𝑘  similar images close to 𝐼𝑞 , from the image 

dataset 𝐼 = {𝐼1, 𝐼2, … , 𝐼𝑁}, where N is the size of the database 

usually of large-scale in practice. The image 𝐼𝑋  can be 

converted into a vector in the following steps [1]: 

 

(1) The image 𝐼𝑋  is rasterized into an array of pixel 

elements, which can then be encoded into a matrix.  

 

(2) Feature extraction, for example CNN, is adopted to 

extract numerical data from the matrix, which 

generally involves extracting low-level features 

such as color, texture, and shapes.  

 

(3) The extracted features of an image are quantified 

into feature vector 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝐷]
𝑇. 

 

This transformation could be applied to both query image and 

images in the dataset. Therefore, the image retrieval task in a 

large image collection can be converted into large-scale 

vector similarity search, with each feature vector linked to the 

corresponding image.    

 

Then we consider a set of points 𝐷 — each point represented 

by a vector — in 𝑑-dimensional space ℝ𝑑, and a query point 

𝑞. We denote ‖𝑝, 𝑞‖ as the Euclidean distance between two 

points 𝑝 and 𝑞 in the space. We can obtain the top-𝑘 points 

through exhaustive search irrespective of the size of the set 𝐷 

and the dimension 𝑑.  

 

Obtaining the exact nearest neighbor of 𝑞 in the brute-force 

manner, however, in a high-dimensional Euclidean space of 

the system, which could contain billions of objects in practice, 

can be computationally expensive. This is known as the 

“Curse of dimensionality”. For image retrieval in some large-

scale datasets larger than  𝑁 = 106, however, ANNs has been 

verified to achieve better trade-offs between accuracy and 

resources utilization than brute-force linear scan method [2].  

 

In this study, we focus on optimizing hashing-based c-ANNs. 

c-ANNs is a popular version of ANNs problem. c-ANNs aims 

to obtain a point 𝑜 ∈ 𝐷  that satisfies ‖𝑜, 𝑞‖ ≤ 𝑐‖𝑜∗, 𝑞‖ , 

where 𝑐 is an approximation ratio that exceeds 1, and 𝑜∗ is 

the exact nearest neighbor of 𝑞 . This problem lays a 

foundation for top-𝑘 similar images retrieval.  

 

II. EXISTING METHODS 

 

In this session we review related work in the hashing based 

ANNS and their application for image retrieval. In general, 

the hashing-based ANNs methods project the point in high-

dimensional space ℝ𝑑  to a low-dimensional embedded 

representation, which is a hash code technically. The hash 

code reduces the dimensionality of the data and enables 

efficient storage and distance calculation of the data points. 

 

Numerous hashing-based ANN methods have been proposed 

in the previous decades, which can be divided into two sub-

categories: locality sensitive hashing (LSH) and learning to 

Hash (L2H). [3] We examine these two methods in this 

session.  

 

A. Locality-sensitive Hashing 

 

Locality-sensitive hashing (LSH) is a hashing technique that 
relies on the concept that if two points in a space are in close 
proximity to each other, there is a high probability of them 
remaining close together even after being projected onto a 
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hyperplane. In essence, LSH works by bucketing similar 
points through hash functions. Then with the query points 
hashed, one can retrieve near neighbors as well as elements 
stored in buckets which contain that point. It enables much 
better efficiency than using the brute force approach which 
compares all vectors with each other. 

 

The core of LSH is the scalar projection (dot product), given 
by 𝑎𝑇𝑥, where 𝑥 is a point in the space and 𝑎𝑇  is a vector with 
components that are selected at random from a Gaussian 
distribution, for example 𝑁(0, 𝐼). This scalar projection is 
then quantized with the hash function 

 
ℎ(𝑥) =  ⌊

𝑎𝑇𝑥 + 𝑏

𝑤
⌋ 

 

(1) 

where 𝑤  is the width of each quantization bin, and 𝑏  is 
random variable uniformly distributed in the interval [0, 𝑤) 
that makes the quantization error easier to analyze. 

 

Numerous methods have been developed based on LSH, 
which define hash in different fashions, for example 
MinHash [4]. The projection is usually obtained by 
concatenating multiple hash functions, and a quantization 
bucket is a set of points binned together based on their 
similarity.  Even if the hashing details are different, the hash 
functions are designed with the goal that  

1. For any points 𝑝 and 𝑞 in ℝ𝑑 that are close to each 
other (‖𝑝 − 𝑞‖ ≤ 𝑅 ), there is a high probability 
𝑃1that they fall into the same bucket 

𝑃[ℎ(𝑝) = ℎ(𝑞)] ≥ 𝑃1 

2. For any points 𝑝  and 𝑞  in ℝ𝑑  that are far apart 
(‖𝑝 − 𝑞‖ ≥ 𝑐𝑅, 𝑐 > 1), there is a low probability 
𝑃2 ≤ 𝑃1 that they fall into the same bucket 

𝑃[ℎ(𝑝) = ℎ(𝑞)] ≤ 𝑃2 

The points in the dataset can be classified into various 
quantization buckets using hash functions. Given a query 
point 𝑞 which will be then hashed, the algorithm iterates the 
data points that are hashed in the same bucket, and the desired 
point 𝑜  is found when it satisfies ‖𝑜, 𝑞‖ ≤ 𝑐‖𝑜∗, 𝑞‖ 
according to c-ANNs problem. Thus, this method allows for 
efficient retrieval of similar elements by reducing the 
comparison process, rather than performing a comparison of 
the full dataset.  

 

It’s noteworthy that LSH is data-independent, meaning data 
characteristics, such as data distribution, are not essential for 
designing hash functions. LSH fails to exploit the distribution 
of feature vectors. As a result, there is no guarantee that two 
adjacent will be mapped to adjacent hash spaces. Some 
scholars argue that this process of hashing unfortunately 
requires an enormous storage cost, if the size of the dataset 
becomes larger [5]. This original LSH index structure has 
excessively large indexes, which greatly impacted its 
efficiency and worked effectively only for datasets of 
relatively small or medium sizes [2]. However, some state-
of-the-art LSH based methods like Collision Counting have 
alleviated this issue to some extent [6].  

 

B. Product Quantization 

 

Product Quantization (PQ) is an effective hashing technique 

in L2H for handling large-scale vector similarity search. In 

PQ algorithm, the product refers to the cartesian product, and 

the quantization refers to vector quantization. In PQ, the high-

dimensional feature vector is compressed in such a manner 

that the PQ-encoded code can efficiently approximate the 

original vector, and the code can be stored in memory, 

thereby avoiding costly disk accesses. Without quantizing the 

query vector 𝑞 like LSH, the distance between the 𝑞 and the 

cluster center of each low-dimensional space can be 

calculated via “vector-to-centroid distances” [7]. 

 

Assume we have a feature vector 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝐷]
𝑇, where 

𝐷 is the dimension of the feature vector. In PQ, the vector is 

encoded into compact PQ-codes.  Firstly, the vector 𝑋 is split 

into multiple 𝑀 sub-vectors, typically 8 or 16, each of which 

is significantly of lower dimension than the original vector, 

as demonstrated in Equation (2).  

 

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝐷]
𝑇 

=

[
 
 
 

𝑥1, 𝑥2, . . . , 𝑥𝐷
𝑀⏟        

𝑥1
𝑇

, … , 𝑥𝐷−𝐷
𝑀+1

, … , 𝑥𝐷
⏟      

𝑥𝑀
𝑇 ]

 
 
 
𝑇

     

= [𝑥1
𝑇
, 𝑥2

𝑇
, . . . 𝑥𝑀

𝑇
]
𝑇

                                   

 

 

 

(2) 

 

 

where 𝑥𝑡ℎ is 𝑚𝑡ℎ sub-vector, and m ∈ {1, … ,𝑀} 
 

Next step is vector quantization, and as seen in Figure 1, 𝐾-

means algorithm is used to compress each sub-vector with 

quantizer 𝑞𝑐, which replaces each sub-region of a vector with 

the closest matching centroid. The centroids here refer to the 

most commonly occurring patterns in the dataset sub-vectors.  

 

 

 

Figure 1: The sub-vectors are converted to the centroids [8].   

 

To represent a vector of dimension 𝐷, we identify the closest 

centroid and its corresponding integer id for each sub-vector 

obtained in the first step. This generates a sequence of 

centroid ids, typically either 8 or 16, which significantly 

reduces space requirements. The mapping results of each sub-

vector and centroid are stored in codebook 𝐶𝑖  to enable 



efficient retrieval. When reproduction value of the mapping 

is 𝐼 = 𝐼1 × …× 𝐼𝑚, the codebook can be defined as  

 

 𝐶 = 𝐶1 × …× 𝐶𝑚   (3) 

 

 
Figure 2: Each sub-vector converted into a centroid [7]. 

 

The figure 2 shows the process of obtaining the centroids via 

distance computation. Every centroid of this set is the 

concatenation of centroids of 𝑚 subquantizers. However, In 

order to overcome the memory inefficiency associated with 

storing centroids, it is necessary to compress them into a 

compact code. To achieve this, we select the centroid closest 

to our target from a pool of centroids that belong to the same 

sub-space. Finally, we encode each segment of our original 

vectors through the use of centroid IDs, with each ID being 

encoded using 8 bits, known as PQ code.  

 

We assume that the size of the original vector is 128 × 32 

bits = 4096 bits, which is 512 bytes. We divide the vector 

into 8 sub-vector and each of them is converted into a PQ 

code as described earlier. As a result, this enables us to 

represent the 128-dimensional vector of floating-point 

numbers using the index of its closest center, which requires 

only 8 bytes of storage. Thus, this significantly improves 

memory usage. Figure 3 provides an example of this process. 

 

 

 
Figure 3: The process of codebook construction and indexing [7]. 

Apart from traditional PQ, the inverted list is introduced to 

efficiently by [8] to store the mapping relationship, which is 

known as IVFPQ.  

 

In the inverted index variant of Product Quantization 

(IVFPQ), coarse quantization is performed initially using 

vector quantization. Then, the dataset vectors are sequentially 

inserted into the inverted index table based on the 

quantization encoding. The inverted order is determined 

based on the distance between vectors and quantized feature 

values. This process improves the speed of search operations. 

However, we still observe that the standard PQ and IVFPQ 

algorithm uniformly groups vectors without considering their 

distribution. It should be acknowledged that some vectors 

may have a correlation between dimensions that impact their 

grouping. However, the computational cost of retrieval is still 

large when the size of dataset 𝑁 is large, because of the low 

recall rate in both PQ and IVFPQ indexes [2].  

 

 
Figure 4: The process of inverted index construction [6]. 

 

I. MY PROPOSED METHODS 

 

As is known, Product Quantization (PQ) decomposes a high-

dimensional vector space into a Cartesian product of 

subspaces, which are quantized separately. However, to 

achieve optimal PQ performance, it is essential to determine 

the ideal space decomposition to efficiently represent the data. 

It is important to note that increasing the scale of training 

datasets leads to an increase in codebook size, under 

reasonable error control [10]. The increase in codebook size 

corresponds to the rise in data dimensionality and code size, 

making inverted index compression and search less efficient. 

In addition, PQ achieves faster distance comparison through 

dimensionality reduction and distance table lookup, but still 



requires linear brute-force comparison, which slows down 

the construction process. 

 

To tackle the computationally intensive construction and 

comparison issues, we present FPQ, a new algorithm that 

builds upon the existing PQ algorithm by considering 

centroids distribution and utilizing parallel codebook 

generation to enhance the performance and efficiency of PQ. 

In the following section, we provide a detailed explanation of 

the FPQ algorithm. 

 

A. Open Indexing Compression 

 

In space ℝ𝑑, Cartesian 𝑘-means algorithm can compress data 

by specifying specifying 𝑘  centroids. And then log2 𝑘  bits 

can be representing any data point any data dimension 𝑑. The 

process of finding these centroids involves brute-force search, 

which can be computationally expensive at 𝑂(𝑑𝑘) , and 

producing low distortion often requires a very large 𝑘 . 

Instead, PQ can restrict centroids to an axis-aligned, m-

dimensional grid while still having 𝑘𝑚  centroids that keep 

search time at 𝑂(𝑑𝑘). Fig. 5 (b) shows that many of these 

centroids may not have any data points assigned to them. This 

arises when the distributions on 𝑚 subspaces are not 

independent of each other. 

 

 

 
Figure 5: The red points denote centroids, which is train on a 

random set of points denoted by gray points [11]. 

 

In order to conduct fast searches, this algorithm should 

ultimately be viewed as a form of (lossy) data compression 

that prioritizes achieving minimal distortion. However, it 

should be noted that all bits allocated to data points should be 

used sparingly [11]. The original PQ algorithm assumes that 

the data points are of normal distribution, which is not always 

realistic or representative of real-world data. In consequence, 

some of the centroids learned during training may not receive 

enough data support, leading to suboptimal performance of 

the algorithm. 

 

Similar to PQ, our proposed model will first split a vector into 

sub-vectors and encode each sub-vector using its own PQ 

codebook. We introduce the algorithm OpenIndexing, 

inspired by open addressing, through which we try addressing 

the distribution issue of centroid points. By setting the 

constant 𝑐 (𝑐 ≥ 1), we get the equation 

  

𝐿𝑖𝑚𝑖𝑡 =
𝑐 ∗ 𝐷𝑎𝑡𝑎𝐿𝑒𝑛𝑔𝑡ℎ ∗ 𝑆𝑢𝑏𝑉𝑒𝑐𝑡𝑜𝑟𝑁𝑢𝑚

𝑘
 (3) 

 

If the number of points around the centroids exceeds this 

𝐿𝑖𝑚𝑖𝑡 , the next point to support this centroid will be 

distributed to the next nearest centroids. In this case, the 

centroid can be trained more evenly supported by more points. 

We admit a reasonable time and space it brings, but it could 

enable more centroids to be supported by acceptable points.  

We also tried to integrate it into inverted file, but it failed after 

days of trials unfortunately.    

 

 
 

B. Parallel Codebook Construction  

 

After implementing Product Quantization, we observed that 

the majority of compression time is spent on the codebook 

construction. 𝐾-means is used to compress each sub-vector 

with quantizer 𝑞𝑐, which replaces each sub-region of a vector 

with the closest matching centroid. Although this algorithm 

is commonly adopted for clustering tasks in Product 

Quantization, it is an iterative method that remains 

computationally expensive with increasing data points.  

 

Developing memory-efficient algorithms in codebook 

construction can be advantageous in these scenarios. By 

implementing brute-force comparison in parallel, the CPU 

processing power can be utilized efficiently. For example. 

multithreading implementation eliminates the CPU's need to 

wait for a specific thread to complete the execution, allowing 

it to switch to another one. Our proposed FPQ employs these 

parallelizing techniques to improve the speed during 

codebook construction through the simultaneous execution of 

multiple processes or threads. To achieve this, we suggest 

integrating PKMeans, a highly parallelized algorithm, into 

the current system. The version can be integrating 

MapReduce, as proposed by [12], or multithreading, or others. 

Although there is potential to refine the parallelized 𝐾-means 

algorithms further to increase the speed, this is beyond the 

scope of this study, and we do not further investigate here. 

 

 



 
 

II. EXPERIMENTAL STUDY 

 

The primary objective of an image retrieval system is to 

obtain a number of images that are similar to the query image. 

This could involve several technical steps, including image 

pre-processing and feature extraction. However, this study 

aims to focus on large-scale vector similarity search, where 

each feature vector is associated with the corresponding 

image. Specifically, the goal of the following experiment is 

to evaluate the effectiveness of our approach. 

 

A. Experimental setup 

 

Dataset. In this study, we conduct 

experiments on the widely used 

MNIST1 database of handwritten 

digits. This database contains 

60,000 training images and 10,000 

testing images, with each image 

represented as a 784-dimensional 

vector. MNIST is commonly used 

for training image processing 

systems, making it an ideal choice 

for our study. To access this 

dataset, we obtained the necessary 

training and testing data from 

Kaggle website2.  

 
As for the parameter in the algorithm, we strictly follow the 
recommendation from [9] about the code length and 𝑘.  

 

 
1 http://yann.lecun.com/exdb/mnist/  

B. Evaluation Indicators 

 

The first evaluation metric in this study is the mean 

categorization accuracy, or the proportion of test images that 

are correctly classified. The mean accuracy rate 𝐴 denotes the 

ratio of the number of relevant images 𝐶 among the retrieved 

images to the total number of query images 𝑁.  

 

𝐴 =
𝐶

𝑁
 (4) 

 

As for the memory usage in this study, we focus on heap 

memory since it is a more effective indicator of overall 

consumption. The method by which we analyze training and 

testing times can take place as a combined total or as separate 

individual evaluations. In addition to those, we take into 

account other important metrics, such as recall, precision, and 

fallout rate, which are commonly used to evaluate 

information retrieval systems. As there are no labels available 

in the testing dataset, we utilize the training data to predict 

and compare the results against the existing labels. For our 

purposes, we define 0 as P and any non-zero value as N. A 

correct prediction results in T, while an incorrect prediction 

results in F. For example, any number that is incorrectly 

classified as zero will be counted as FP. To express these 

metrics, we use Equations (5), (6), and (7). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

 

𝐹𝑎𝑙𝑙𝑜𝑢𝑡 =
𝐹𝑃

𝐹𝑃 + 𝐹𝑁
 (6) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (7) 

 

C. Running environment and Settings.  

 

The running environment details are shown below.  

 

 Details 

Programming 

Language 

Java 17, Python 3.9 

CPU Intel (R) Core (TM) i7-7700 HQ @ 

2.80GHz 

RAM 1× 8 GB DDR4 

ROM 1×Phison SM280128 GPTC15T-

S114-110 

Operating 

System 

Windows 10 64-bit 

Development 

environment 

Eclipse (Java),  

Visual Studio Code (Python) 

Table 1. The environment details of the platform in this 

study.  

2 https://www.kaggle.com/competitions/digit-

recognizer/data  

Figure 6: a sample of 

handwritten digits in 

MNIST database.  

http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/competitions/digit-recognizer/data
https://www.kaggle.com/competitions/digit-recognizer/data


 

Building upon [2], our study implements PQ using the Java 

programming language. And we expand upon said 

implementation, thus obtaining FPQ. Furthermore, we 

conduct comparisons with existing code based on scikit-learn, 

a powerful machine learning module written in python. For 

this part, we utilize the benchmark3 from the existing code 

result. 
 

D. Performance and Result Comparisons 

 

We provide our code on GitHub, which can be verified. In 

the present study, time elapsed is measured in seconds, while 

heap memory consumption is measured in MB (megabytes). 

During all the experiments below, the testing data is set as 

5,000, which can be adjusted if deemed necessary. The results 

running on MNIST are given in Fig 7, 8 and 9. 

 

Our experimental findings indicate a significant performance 

improvement in terms of time elapsed, particularly in training 

time, which can be attributed to the utilization of the memory-

efficient PKMeans algorithm.  

 

 
Figure 7: Performance comparison on elapsed time. 

 

Figure 13 and 14 depict the comparison of accuracy and heap 

memory achieved from our proposed approach with PQ. Our 

proposed algorithm, OpenIndexing, introduces a small 

accuracy and memory overhead that warrants further 

investigation. However, the overhead is relatively minimal 

compared to the significant performance gain achieved by 

using FPQ in terms of time and memory. As a result, 

OpenIndexing allows for the training of significantly more 

data than PQ, leading to a substantial increase in accuracy 

rate. 

 

 
3 https://github.com/alyssaong1/visual-search-

demo/blob/master/mnist-faiss.ipynb  

 
Figure 8: Performance comparison on accuracy. 

 

 

 
Figure 9: Performance comparison on Memory (Heap). 

 

Our performance evaluation involved a comparison of PQ 

and FPQ with Scikit-learn implementation, as Table 1 shows. 

Although FPQ is outperformed by both PQ and Scikit-learn 

in terms of accuracy, our study revealed that FPQ delivers a 

significant performance advantage in terms of both elapsed 

time and memory utilization relative to PQ and Scikit-learn 

respectively. This considerable improvement can be achieved 

with only a minor reduction in accuracy. Therefore, the trade-

off between performance and accuracy makes FPQ an 

attractive proposition for applications that demand high-

speed processing of large datasets. 

 

Model PQ 

(Java) 

FPQ 

(Java) 

Sklearn 

(Python) 

Time (s) 

(Train + Test) 

2996.45  498.33  739.28 

Memory 

Consumption 

239.5 MB 329.1 MB 1.4 GB 

Accuracy (%) 94.32 93.69 94.48 

Table 2. The performance evaluation among PQ, FPQ and 

Scikit-learn in terms of elapsed time, memory consumption 

and accuracy, where Training Data = 50, 000 and testing 

data = 5, 000. 

 

https://github.com/alyssaong1/visual-search-demo/blob/master/mnist-faiss.ipynb
https://github.com/alyssaong1/visual-search-demo/blob/master/mnist-faiss.ipynb


E. Discussion and room for improvement.  

 

In this study, we proposed a new algorithm FPQ for Hashing-

based ANNs. While our proposed algorithm showed 

advantages in terms of speed, we observed that it has 

limitations in accuracy and memory consumption. In this 

section, we will be discussing these findings and highlight 

some possible areas for improvement. 

 

Our proposed algorithm prioritizes speed over accuracy, 

which could be more important in certain applications where 

real-time training processing is essential. However, in some 

other applications, accuracy may be more valuable than speed. 

Therefore, it is necessary to consider the specific use case 

when evaluating the performance of algorithms. 

 

We acknowledged that one of the reasons for the accuracy 

and memory loss in our proposed algorithm is because of 

OpenIndexing algorithm. It is observed that this has a direct 

impact on the accuracy of the algorithm. Additionally, the 

high memory cost should be attributed to memory-efficient 

algorithms KPMeans.  

 

Our proposed algorithm's accuracy was evaluated using the 

MNIST database and relevant metrics. We also examined the 

performance of Recall, Precision, and Fallout after 

conducting experiments. However, we noted that these 

metrics might not be appropriate measures since we predicted 

outcomes using the training data, and we do not provide 

further diagram in this study. Nevertheless, they may be 

useful in evaluating similar image retrieval engines. In 

addition, it is worth noting that the MNIST database is 

comparatively small in scale, so evaluating larger databases 

using these metrics may have certain limitations. 

 

To improve the accuracy and memory efficiency of our 

proposed algorithm, here we suggest further investigating 

into the issues of the centroid distribution, which could 

potentially address the limitations we observed in our project. 

Also, we recommend exploiting more memory-efficient 

algorithms potentially to be integrated into existing PQ 

algorithm, which could help to optimize the algorithm's 

performance further. 

 

In conclusion, our proposed algorithm has advantages in 

terms of speed but has limitations in accuracy and memory 

consumption. We discussed the trade-offs between speed and 

accuracy, analyzed the causes of the accuracy and memory 

loss, acknowledged the limitations of the database, evaluation 

metrics and tools, and suggested future directions for 

improvement. We hope that our findings will contribute to 

the ongoing research in the field of Hashing-based ANNs for 

Large-scale Image Retrieval. 
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