

Hashing-based Approximate Nearest-Neighbor

Search for Large-scale Image Retrieval

Zhejun HE

The Hong Kong Polytechnic University
zhejun.he@connect.polyu.hk

Abstract - With the extensive growth of datasets, content-based

image retrieval (CBIR), which entails the calculation of the

distance between image feature vectors, has been becoming an

important and promising topic. Large amounts of vectorized

data, extracted from images via machine learning algorithms,

are usually of high dimension, and traditional linear scanning

would not be efficient in terms of speed and resource utilization.

Approximate Nearest-Neighbor Search (ANNs) is an effective

solution for quickly retrieving the Top-k results that are closest

to the query image. Therefore, we investigate two well-known

hashing based ANNs methods in this study.

Furthermore, we propose a faster hashing-based ANN

algorithm, named FPQ. Our algorithm considers both the data

distribution and the time-consuming nature in codebook

construction, and it employs memory-efficient algorithms to

achieve increased time efficiency in the training and indexing

processes. The speed, accuracy, and memory consumption of

FPQ are compared and evaluated with other algorithms. Our

results indicate the superiority of FPQ in terms of speed while

consuming minimal memory resources, and search accuracy is

well retained. This research contributes to the development of

efficient CBIR systems that can be deployed in real-world

applications.

Index Terms - Approximate Nearest-Neighbor Search, Hashing-

Based Methods, Content-based Image Retrieval, High-

Dimensional Data, Top-K Retrieval.

I. PROBLEM DEFINITION

With the query image 𝐼𝑞 , our objective is to efficiently

retrieve top-𝑘 similar images close to 𝐼𝑞 , from the image

dataset 𝐼 = {𝐼1, 𝐼2, … , 𝐼𝑁}, where N is the size of the database

usually of large-scale in practice. The image 𝐼𝑋 can be

converted into a vector in the following steps [1]:

(1) The image 𝐼𝑋 is rasterized into an array of pixel

elements, which can then be encoded into a matrix.

(2) Feature extraction, for example CNN, is adopted to

extract numerical data from the matrix, which

generally involves extracting low-level features

such as color, texture, and shapes.

(3) The extracted features of an image are quantified

into feature vector 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝐷]
𝑇.

This transformation could be applied to both query image and

images in the dataset. Therefore, the image retrieval task in a

large image collection can be converted into large-scale

vector similarity search, with each feature vector linked to the

corresponding image.

Then we consider a set of points 𝐷 — each point represented

by a vector — in 𝑑-dimensional space ℝ𝑑, and a query point

𝑞. We denote ‖𝑝, 𝑞‖ as the Euclidean distance between two

points 𝑝 and 𝑞 in the space. We can obtain the top-𝑘 points

through exhaustive search irrespective of the size of the set 𝐷

and the dimension 𝑑.

Obtaining the exact nearest neighbor of 𝑞 in the brute-force

manner, however, in a high-dimensional Euclidean space of

the system, which could contain billions of objects in practice,

can be computationally expensive. This is known as the

“Curse of dimensionality”. For image retrieval in some large-

scale datasets larger than 𝑁 = 106, however, ANNs has been

verified to achieve better trade-offs between accuracy and

resources utilization than brute-force linear scan method [2].

In this study, we focus on optimizing hashing-based c-ANNs.

c-ANNs is a popular version of ANNs problem. c-ANNs aims

to obtain a point 𝑜 ∈ 𝐷 that satisfies ‖𝑜, 𝑞‖ ≤ 𝑐‖𝑜∗, 𝑞‖ ,

where 𝑐 is an approximation ratio that exceeds 1, and 𝑜∗ is

the exact nearest neighbor of 𝑞 . This problem lays a

foundation for top-𝑘 similar images retrieval.

II. EXISTING METHODS

In this session we review related work in the hashing based

ANNS and their application for image retrieval. In general,

the hashing-based ANNs methods project the point in high-

dimensional space ℝ𝑑 to a low-dimensional embedded

representation, which is a hash code technically. The hash

code reduces the dimensionality of the data and enables

efficient storage and distance calculation of the data points.

Numerous hashing-based ANN methods have been proposed

in the previous decades, which can be divided into two sub-

categories: locality sensitive hashing (LSH) and learning to

Hash (L2H). [3] We examine these two methods in this

session.

A. Locality-sensitive Hashing

Locality-sensitive hashing (LSH) is a hashing technique that
relies on the concept that if two points in a space are in close
proximity to each other, there is a high probability of them
remaining close together even after being projected onto a

mailto:zhejun.he@connect.polyu.hk

hyperplane. In essence, LSH works by bucketing similar
points through hash functions. Then with the query points
hashed, one can retrieve near neighbors as well as elements
stored in buckets which contain that point. It enables much
better efficiency than using the brute force approach which
compares all vectors with each other.

The core of LSH is the scalar projection (dot product), given
by 𝑎𝑇𝑥, where 𝑥 is a point in the space and 𝑎𝑇 is a vector with
components that are selected at random from a Gaussian
distribution, for example 𝑁(0, 𝐼). This scalar projection is
then quantized with the hash function

ℎ(𝑥) = ⌊

𝑎𝑇𝑥 + 𝑏

𝑤
⌋

(1)

where 𝑤 is the width of each quantization bin, and 𝑏 is
random variable uniformly distributed in the interval [0, 𝑤)
that makes the quantization error easier to analyze.

Numerous methods have been developed based on LSH,
which define hash in different fashions, for example
MinHash [4]. The projection is usually obtained by
concatenating multiple hash functions, and a quantization
bucket is a set of points binned together based on their
similarity. Even if the hashing details are different, the hash
functions are designed with the goal that

1. For any points 𝑝 and 𝑞 in ℝ𝑑 that are close to each
other (‖𝑝 − 𝑞‖ ≤ 𝑅), there is a high probability
𝑃1that they fall into the same bucket

𝑃[ℎ(𝑝) = ℎ(𝑞)] ≥ 𝑃1

2. For any points 𝑝 and 𝑞 in ℝ𝑑 that are far apart
(‖𝑝 − 𝑞‖ ≥ 𝑐𝑅, 𝑐 > 1), there is a low probability
𝑃2 ≤ 𝑃1 that they fall into the same bucket

𝑃[ℎ(𝑝) = ℎ(𝑞)] ≤ 𝑃2

The points in the dataset can be classified into various
quantization buckets using hash functions. Given a query
point 𝑞 which will be then hashed, the algorithm iterates the
data points that are hashed in the same bucket, and the desired
point 𝑜 is found when it satisfies ‖𝑜, 𝑞‖ ≤ 𝑐‖𝑜∗, 𝑞‖
according to c-ANNs problem. Thus, this method allows for
efficient retrieval of similar elements by reducing the
comparison process, rather than performing a comparison of
the full dataset.

It’s noteworthy that LSH is data-independent, meaning data
characteristics, such as data distribution, are not essential for
designing hash functions. LSH fails to exploit the distribution
of feature vectors. As a result, there is no guarantee that two
adjacent will be mapped to adjacent hash spaces. Some
scholars argue that this process of hashing unfortunately
requires an enormous storage cost, if the size of the dataset
becomes larger [5]. This original LSH index structure has
excessively large indexes, which greatly impacted its
efficiency and worked effectively only for datasets of
relatively small or medium sizes [2]. However, some state-
of-the-art LSH based methods like Collision Counting have
alleviated this issue to some extent [6].

B. Product Quantization

Product Quantization (PQ) is an effective hashing technique

in L2H for handling large-scale vector similarity search. In

PQ algorithm, the product refers to the cartesian product, and

the quantization refers to vector quantization. In PQ, the high-

dimensional feature vector is compressed in such a manner

that the PQ-encoded code can efficiently approximate the

original vector, and the code can be stored in memory,

thereby avoiding costly disk accesses. Without quantizing the

query vector 𝑞 like LSH, the distance between the 𝑞 and the

cluster center of each low-dimensional space can be

calculated via “vector-to-centroid distances” [7].

Assume we have a feature vector 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝐷]
𝑇, where

𝐷 is the dimension of the feature vector. In PQ, the vector is

encoded into compact PQ-codes. Firstly, the vector 𝑋 is split

into multiple 𝑀 sub-vectors, typically 8 or 16, each of which

is significantly of lower dimension than the original vector,

as demonstrated in Equation (2).

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝐷]
𝑇

=

[

𝑥1, 𝑥2, . . . , 𝑥𝐷
𝑀⏟

𝑥1
𝑇

, … , 𝑥𝐷−𝐷
𝑀+1

, … , 𝑥𝐷
⏟

𝑥𝑀
𝑇]

𝑇

= [𝑥1
𝑇
, 𝑥2

𝑇
, . . . 𝑥𝑀

𝑇
]
𝑇

(2)

where 𝑥𝑡ℎ is 𝑚𝑡ℎ sub-vector, and m ∈ {1, … ,𝑀}

Next step is vector quantization, and as seen in Figure 1, 𝐾-

means algorithm is used to compress each sub-vector with

quantizer 𝑞𝑐, which replaces each sub-region of a vector with

the closest matching centroid. The centroids here refer to the

most commonly occurring patterns in the dataset sub-vectors.

Figure 1: The sub-vectors are converted to the centroids [8].

To represent a vector of dimension 𝐷, we identify the closest

centroid and its corresponding integer id for each sub-vector

obtained in the first step. This generates a sequence of

centroid ids, typically either 8 or 16, which significantly

reduces space requirements. The mapping results of each sub-

vector and centroid are stored in codebook 𝐶𝑖 to enable

efficient retrieval. When reproduction value of the mapping

is 𝐼 = 𝐼1 × …× 𝐼𝑚, the codebook can be defined as

 𝐶 = 𝐶1 × …× 𝐶𝑚 (3)

Figure 2: Each sub-vector converted into a centroid [7].

The figure 2 shows the process of obtaining the centroids via

distance computation. Every centroid of this set is the

concatenation of centroids of 𝑚 subquantizers. However, In

order to overcome the memory inefficiency associated with

storing centroids, it is necessary to compress them into a

compact code. To achieve this, we select the centroid closest

to our target from a pool of centroids that belong to the same

sub-space. Finally, we encode each segment of our original

vectors through the use of centroid IDs, with each ID being

encoded using 8 bits, known as PQ code.

We assume that the size of the original vector is 128 × 32

bits = 4096 bits, which is 512 bytes. We divide the vector

into 8 sub-vector and each of them is converted into a PQ

code as described earlier. As a result, this enables us to

represent the 128-dimensional vector of floating-point

numbers using the index of its closest center, which requires

only 8 bytes of storage. Thus, this significantly improves

memory usage. Figure 3 provides an example of this process.

Figure 3: The process of codebook construction and indexing [7].

Apart from traditional PQ, the inverted list is introduced to

efficiently by [8] to store the mapping relationship, which is

known as IVFPQ.

In the inverted index variant of Product Quantization

(IVFPQ), coarse quantization is performed initially using

vector quantization. Then, the dataset vectors are sequentially

inserted into the inverted index table based on the

quantization encoding. The inverted order is determined

based on the distance between vectors and quantized feature

values. This process improves the speed of search operations.

However, we still observe that the standard PQ and IVFPQ

algorithm uniformly groups vectors without considering their

distribution. It should be acknowledged that some vectors

may have a correlation between dimensions that impact their

grouping. However, the computational cost of retrieval is still

large when the size of dataset 𝑁 is large, because of the low

recall rate in both PQ and IVFPQ indexes [2].

Figure 4: The process of inverted index construction [6].

I. MY PROPOSED METHODS

As is known, Product Quantization (PQ) decomposes a high-

dimensional vector space into a Cartesian product of

subspaces, which are quantized separately. However, to

achieve optimal PQ performance, it is essential to determine

the ideal space decomposition to efficiently represent the data.

It is important to note that increasing the scale of training

datasets leads to an increase in codebook size, under

reasonable error control [10]. The increase in codebook size

corresponds to the rise in data dimensionality and code size,

making inverted index compression and search less efficient.

In addition, PQ achieves faster distance comparison through

dimensionality reduction and distance table lookup, but still

requires linear brute-force comparison, which slows down

the construction process.

To tackle the computationally intensive construction and

comparison issues, we present FPQ, a new algorithm that

builds upon the existing PQ algorithm by considering

centroids distribution and utilizing parallel codebook

generation to enhance the performance and efficiency of PQ.

In the following section, we provide a detailed explanation of

the FPQ algorithm.

A. Open Indexing Compression

In space ℝ𝑑, Cartesian 𝑘-means algorithm can compress data

by specifying specifying 𝑘 centroids. And then log2 𝑘 bits

can be representing any data point any data dimension 𝑑. The

process of finding these centroids involves brute-force search,

which can be computationally expensive at 𝑂(𝑑𝑘) , and

producing low distortion often requires a very large 𝑘 .

Instead, PQ can restrict centroids to an axis-aligned, m-

dimensional grid while still having 𝑘𝑚 centroids that keep

search time at 𝑂(𝑑𝑘). Fig. 5 (b) shows that many of these

centroids may not have any data points assigned to them. This

arises when the distributions on 𝑚 subspaces are not

independent of each other.

Figure 5: The red points denote centroids, which is train on a

random set of points denoted by gray points [11].

In order to conduct fast searches, this algorithm should

ultimately be viewed as a form of (lossy) data compression

that prioritizes achieving minimal distortion. However, it

should be noted that all bits allocated to data points should be

used sparingly [11]. The original PQ algorithm assumes that

the data points are of normal distribution, which is not always

realistic or representative of real-world data. In consequence,

some of the centroids learned during training may not receive

enough data support, leading to suboptimal performance of

the algorithm.

Similar to PQ, our proposed model will first split a vector into

sub-vectors and encode each sub-vector using its own PQ

codebook. We introduce the algorithm OpenIndexing,

inspired by open addressing, through which we try addressing

the distribution issue of centroid points. By setting the

constant 𝑐 (𝑐 ≥ 1), we get the equation

𝐿𝑖𝑚𝑖𝑡 =
𝑐 ∗ 𝐷𝑎𝑡𝑎𝐿𝑒𝑛𝑔𝑡ℎ ∗ 𝑆𝑢𝑏𝑉𝑒𝑐𝑡𝑜𝑟𝑁𝑢𝑚

𝑘
 (3)

If the number of points around the centroids exceeds this

𝐿𝑖𝑚𝑖𝑡 , the next point to support this centroid will be

distributed to the next nearest centroids. In this case, the

centroid can be trained more evenly supported by more points.

We admit a reasonable time and space it brings, but it could

enable more centroids to be supported by acceptable points.

We also tried to integrate it into inverted file, but it failed after

days of trials unfortunately.

B. Parallel Codebook Construction

After implementing Product Quantization, we observed that

the majority of compression time is spent on the codebook

construction. 𝐾-means is used to compress each sub-vector

with quantizer 𝑞𝑐, which replaces each sub-region of a vector

with the closest matching centroid. Although this algorithm

is commonly adopted for clustering tasks in Product

Quantization, it is an iterative method that remains

computationally expensive with increasing data points.

Developing memory-efficient algorithms in codebook

construction can be advantageous in these scenarios. By

implementing brute-force comparison in parallel, the CPU

processing power can be utilized efficiently. For example.

multithreading implementation eliminates the CPU's need to

wait for a specific thread to complete the execution, allowing

it to switch to another one. Our proposed FPQ employs these

parallelizing techniques to improve the speed during

codebook construction through the simultaneous execution of

multiple processes or threads. To achieve this, we suggest

integrating PKMeans, a highly parallelized algorithm, into

the current system. The version can be integrating

MapReduce, as proposed by [12], or multithreading, or others.

Although there is potential to refine the parallelized 𝐾-means

algorithms further to increase the speed, this is beyond the

scope of this study, and we do not further investigate here.

II. EXPERIMENTAL STUDY

The primary objective of an image retrieval system is to

obtain a number of images that are similar to the query image.

This could involve several technical steps, including image

pre-processing and feature extraction. However, this study

aims to focus on large-scale vector similarity search, where

each feature vector is associated with the corresponding

image. Specifically, the goal of the following experiment is

to evaluate the effectiveness of our approach.

A. Experimental setup

Dataset. In this study, we conduct

experiments on the widely used

MNIST1 database of handwritten

digits. This database contains

60,000 training images and 10,000

testing images, with each image

represented as a 784-dimensional

vector. MNIST is commonly used

for training image processing

systems, making it an ideal choice

for our study. To access this

dataset, we obtained the necessary

training and testing data from

Kaggle website2.

As for the parameter in the algorithm, we strictly follow the
recommendation from [9] about the code length and 𝑘.

1 http://yann.lecun.com/exdb/mnist/

B. Evaluation Indicators

The first evaluation metric in this study is the mean

categorization accuracy, or the proportion of test images that

are correctly classified. The mean accuracy rate 𝐴 denotes the

ratio of the number of relevant images 𝐶 among the retrieved

images to the total number of query images 𝑁.

𝐴 =
𝐶

𝑁
 (4)

As for the memory usage in this study, we focus on heap

memory since it is a more effective indicator of overall

consumption. The method by which we analyze training and

testing times can take place as a combined total or as separate

individual evaluations. In addition to those, we take into

account other important metrics, such as recall, precision, and

fallout rate, which are commonly used to evaluate

information retrieval systems. As there are no labels available

in the testing dataset, we utilize the training data to predict

and compare the results against the existing labels. For our

purposes, we define 0 as P and any non-zero value as N. A

correct prediction results in T, while an incorrect prediction

results in F. For example, any number that is incorrectly

classified as zero will be counted as FP. To express these

metrics, we use Equations (5), (6), and (7).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5)

𝐹𝑎𝑙𝑙𝑜𝑢𝑡 =
𝐹𝑃

𝐹𝑃 + 𝐹𝑁
 (6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (7)

C. Running environment and Settings.

The running environment details are shown below.

 Details

Programming

Language

Java 17, Python 3.9

CPU Intel (R) Core (TM) i7-7700 HQ @

2.80GHz

RAM 1× 8 GB DDR4

ROM 1×Phison SM280128 GPTC15T-

S114-110

Operating

System

Windows 10 64-bit

Development

environment

Eclipse (Java),

Visual Studio Code (Python)

Table 1. The environment details of the platform in this

study.

2 https://www.kaggle.com/competitions/digit-

recognizer/data

Figure 6: a sample of

handwritten digits in

MNIST database.

http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/competitions/digit-recognizer/data
https://www.kaggle.com/competitions/digit-recognizer/data

Building upon [2], our study implements PQ using the Java

programming language. And we expand upon said

implementation, thus obtaining FPQ. Furthermore, we

conduct comparisons with existing code based on scikit-learn,

a powerful machine learning module written in python. For

this part, we utilize the benchmark3 from the existing code

result.

D. Performance and Result Comparisons

We provide our code on GitHub, which can be verified. In

the present study, time elapsed is measured in seconds, while

heap memory consumption is measured in MB (megabytes).

During all the experiments below, the testing data is set as

5,000, which can be adjusted if deemed necessary. The results

running on MNIST are given in Fig 7, 8 and 9.

Our experimental findings indicate a significant performance

improvement in terms of time elapsed, particularly in training

time, which can be attributed to the utilization of the memory-

efficient PKMeans algorithm.

Figure 7: Performance comparison on elapsed time.

Figure 13 and 14 depict the comparison of accuracy and heap

memory achieved from our proposed approach with PQ. Our

proposed algorithm, OpenIndexing, introduces a small

accuracy and memory overhead that warrants further

investigation. However, the overhead is relatively minimal

compared to the significant performance gain achieved by

using FPQ in terms of time and memory. As a result,

OpenIndexing allows for the training of significantly more

data than PQ, leading to a substantial increase in accuracy

rate.

3 https://github.com/alyssaong1/visual-search-

demo/blob/master/mnist-faiss.ipynb

Figure 8: Performance comparison on accuracy.

Figure 9: Performance comparison on Memory (Heap).

Our performance evaluation involved a comparison of PQ

and FPQ with Scikit-learn implementation, as Table 1 shows.

Although FPQ is outperformed by both PQ and Scikit-learn

in terms of accuracy, our study revealed that FPQ delivers a

significant performance advantage in terms of both elapsed

time and memory utilization relative to PQ and Scikit-learn

respectively. This considerable improvement can be achieved

with only a minor reduction in accuracy. Therefore, the trade-

off between performance and accuracy makes FPQ an

attractive proposition for applications that demand high-

speed processing of large datasets.

Model PQ

(Java)

FPQ

(Java)

Sklearn

(Python)

Time (s)

(Train + Test)

2996.45 498.33 739.28

Memory

Consumption

239.5 MB 329.1 MB 1.4 GB

Accuracy (%) 94.32 93.69 94.48

Table 2. The performance evaluation among PQ, FPQ and

Scikit-learn in terms of elapsed time, memory consumption

and accuracy, where Training Data = 50, 000 and testing

data = 5, 000.

https://github.com/alyssaong1/visual-search-demo/blob/master/mnist-faiss.ipynb
https://github.com/alyssaong1/visual-search-demo/blob/master/mnist-faiss.ipynb

E. Discussion and room for improvement.

In this study, we proposed a new algorithm FPQ for Hashing-

based ANNs. While our proposed algorithm showed

advantages in terms of speed, we observed that it has

limitations in accuracy and memory consumption. In this

section, we will be discussing these findings and highlight

some possible areas for improvement.

Our proposed algorithm prioritizes speed over accuracy,

which could be more important in certain applications where

real-time training processing is essential. However, in some

other applications, accuracy may be more valuable than speed.

Therefore, it is necessary to consider the specific use case

when evaluating the performance of algorithms.

We acknowledged that one of the reasons for the accuracy

and memory loss in our proposed algorithm is because of

OpenIndexing algorithm. It is observed that this has a direct

impact on the accuracy of the algorithm. Additionally, the

high memory cost should be attributed to memory-efficient

algorithms KPMeans.

Our proposed algorithm's accuracy was evaluated using the

MNIST database and relevant metrics. We also examined the

performance of Recall, Precision, and Fallout after

conducting experiments. However, we noted that these

metrics might not be appropriate measures since we predicted

outcomes using the training data, and we do not provide

further diagram in this study. Nevertheless, they may be

useful in evaluating similar image retrieval engines. In

addition, it is worth noting that the MNIST database is

comparatively small in scale, so evaluating larger databases

using these metrics may have certain limitations.

To improve the accuracy and memory efficiency of our

proposed algorithm, here we suggest further investigating

into the issues of the centroid distribution, which could

potentially address the limitations we observed in our project.

Also, we recommend exploiting more memory-efficient

algorithms potentially to be integrated into existing PQ

algorithm, which could help to optimize the algorithm's

performance further.

In conclusion, our proposed algorithm has advantages in

terms of speed but has limitations in accuracy and memory

consumption. We discussed the trade-offs between speed and

accuracy, analyzed the causes of the accuracy and memory

loss, acknowledged the limitations of the database, evaluation

metrics and tools, and suggested future directions for

improvement. We hope that our findings will contribute to

the ongoing research in the field of Hashing-based ANNs for

Large-scale Image Retrieval.

REFERENCES

[1] K. Panchapakesan, “Image processing through vector quantization,”

Thesis. Multimedia Tools and Applications. 2000.
[2] Y. Matsui, Y. Uchida, H. Jégou, and S. Satoh, “A Survey of Product

Quantization,” ITE TRANSACTIONS ON MEDIA TECHNOLOGY
AND APPLICATIONS, vol. 6, no. 1, pp. 2–10, 2018.

[3] W. Li et al., “Approximate Nearest Neighbor Search on High
Dimensional Data - Experiments, Analyses, and Improvement,” IEEE
transactions on knowledge and data engineering, vol. 32, no. 8, pp.
1475–1488, 2020.

[4] O. Jafari, K. M. Islam, and P. Nagarkar, “Drawbacks and Proposed
Solutions for Real-time Processing on Existing State-of-the-art
Locality Sensitive Hashing Techniques,” arXiv.org, 2019.

[5] B. Zheng, X. Zhao, L. Weng, N. Q. V. Hung, H. Liu, and C. S. Jensen,
“PM-LSH: A fast and accurate LSH framework for high-dimensional
approximate NN search,” Proceedings of the VLDB Endowment, vol.
13, no. 5, pp. 643–655, 2020.

[6] S. Gasiorek, “Counting collisions in an N-billiard system using angles
between collision subspaces,” Symmetry, integrability and geometry,
methods and applications, vol. 16, 2020.

[7] S. O’Hara and B. A. Draper, “Are you using the right approximate
nearest neighbor algorithm?,” in 2013 IEEE WORKSHOP ON
APPLICATIONS OF COMPUTER VISION (WACV), 2013.

[8] P. Chang, “Product Quantization for Similarity Search” [Online]
Available: https://towardsdatascience.com/product-quantization-for-
similarity-search-2f1f67c5fddd

[9] H. Jégou, M. Douze, and C. Schmid, “Product Quantization for Nearest
Neighbor Search,” IEEE transactions on pattern analysis and machine
intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[10] C.-Y. Chiu, J.-S. Chiu, S. Markchit, and S.-H. Chou, “Effective product
quantization-based indexing for nearest neighbor search,” Multimedia
tools and applications, vol. 78, no. 3, pp. 2877–2895, 2019.

[11] Y. Kalantidis & Y. Avrithis. “Locally Optimized Product Quantization
for Approximate Nearest Neighbor Search,” IEEE Computer Vision
Foundation. vol. 78, no. 3, pp. 27–55, 2014.

[12] S. Jin, Y. Cui, and C. Yu, “A New Parallelization Method for K-means,”
2016.

https://towardsdatascience.com/product-quantization-for-similarity-search-2f1f67c5fddd
https://towardsdatascience.com/product-quantization-for-similarity-search-2f1f67c5fddd

